

Nitrous oxide (N2O) emissions from decomposing crop residues in soils

<u>Gwenaëlle Lashermes</u>, Sylvie Recous, Gonzague Alavoine, Baldur Janz, Klaus Butterbach-Bahl, Maria Ernfors, Patricia Laville

gwenaelle.lashermes@inrae.fi

Fractionation of AgroResources and Environment lab, Reims, France

Reims, 12 October 2021 – The ICOS France Science day

The recycling of crop residues into the soil

Crop residues: all the materials left above and below ground after harvesting or cover destruction (e.g., "catch crop", "green manure")

Apart from exogenous organic matters (e.g., manure, compost), crop residues are the only C input to soils

Senescent wheat residue after harvest

A cover crop at green stage being destroyed

Soils sequester C preventing CO₂ from escaping into our atmosphere

https://www.4p1000.org/

The recycling of crop residues into the soil

Other benefits ...

Crop residues: contribute main elements (e.g., nitrogen (N), phosphorous, sulfur) to the soil, supporting the crop nutrition, the soil microorganisms and soil fauna biodiversity

sustain soil organic matters (SOM) providing soil structure, nutrient retention, habitats for soil life, protection from erosion and flooding

N₂O

But crop residues contribute to the greenhouse gas (GHG) balance of cropping systems in two ways

- Soil carbon storage in soils
- Nitrous oxide (N₂O) emissions

Clover cover

Agroecology: a diversity of crop residues management

☐ diversification of crops and use of inter-crop in crop rotations

Rape seed Brassicaceae

Wheat *Poaceae*

Pea *Fabaceae*

Sugar beet Amaranthaceae

Alfalfa Fabaceae

Potatoe Solanaceae

https://agriculture-de-cohser/ation.com/-Phototheque-Titrit

Direct seeding of corn in rye

→ Crop residues:

- from plant with different species, botanical families, physiological stages (maturity)
- in different recycling situations (on the soil surface, buried...)

How N₂O emission are estimated from crop residues?

Crop residue N input

In the Intergovernmental Panel on Climate Change (IPCC) Tier 1 methodology, the nature of the plant residues is taken into account by the quantity of biomass (AGR & BGR) returned and its nitrogen (N) content

Is it that simple?

Adapted from (Recous et al. Quae 2017) and (Verhoeven et al., Calif Agr 2017)

Objectives of the study

Adapted from (Recous et al. Quae 2017) and (Verhoeven et al., Calif Agr 2017)

Materials and Methods

A range of crop residue "quality"

The residue chemical quality is both the N content and the biochemical composition plant tissues -> depends on crop species, plant part, and crop maturity

Materials and Methods

Soil+residue in cylinders

Crop residues mixed in the top 0-4 cm layer

- Controlled density of
 1.25 g cm⁻³
- 4 t residue-DM ha⁻¹
- 15°C
- 60% WFSP

Initial residue moisture adjusted to 20% wet weight (wheat, pea, potato, rapeseed) and 80% (others)

Calcareous silty clay loam (GRI) pH 8.3 Sandy loam (SLU) pH 6.2

No residue in the bottom 0-4 cm layer

- NO₃ and NH₄ contents in the 2 layers at days 0, 4, 7, 14, 28, 60
- CO₂ trapped in NaOH

(Alavoine et al., Pedobiologia, 2008)

- Flux assessments by two methods : in open circuit and with accumulation in closed circuit
- Every day during 3 weeks

(Laville et al., IEEE International Workshop on Metrology for Agriculture and Forestry, 2019)

Daily and cumulative CO₂ emitted

(Lashermes et al. STOTEN, n°150883, 2021, https://doi.org/10.1016/j.scitotenv.2021.150883)

Soil mineral N dynamics: NO₃ and NH₄ +

These higher soil NH₄⁺ contents were related to CO₂ and N₂O emitting situations

Daily and cumulative N₂O emitted

95% confidence band
Exponential model

$$netN2O_{d60} = 23.497 \cdot e^{0.093 \cdot SOL - NDS}$$

 $r^2 = 0.71$

The residue neutral detergent soluble content explained the observed N₂O emissions

These residues were also non-senescent and promoted high N_2O emissions, likely directly by nitrification and indirectly by denitrification in microbial hotspots.

(Lashermes et al. STOTEN, n°150883, 2021, https://doi.org/10.1016/j.scitotenv.2021.150883)

Conclusions

N_2O emissions :

- occurred mainly in the very first days of decomposition
- were related to the consumption of soluble compounds
- Were further limited by microbial assimilation of mineral N (i.e., N immobilization)

Residues with a high soluble content (non-senescent) promoted N_2O emissions representing 1–5% of applied N >> 0.6 % the current recommended values for residue *EF-N_2O* in national inventories (IPCC, 2019).

Differentiated emission factors are strongly needed!

Destruction of cover crop

More studies are needed to objectively weigh the other benefits these non-senescent residues could bestow upon C storage, NO₃⁻ retention, and erosion limitation by soil cover.

Conclusions

The data are available on the Data INRAE repository

https://doi.org/10.15454/8ASYPC

More information about the projet : https://projects.au.dk/residuegas/

We thank Sylvie Millon, Pascal Thiébeau, Olivier Delfosse, Rachid Benabdallah, Hugues Clivot for their help... and you for your attention

This work was supported by the ERA-NET FACCE ERA-GAS from the European Union's Horizon (No. 696356). The French funding grant number was ANR-17-EGAS-0003.